The Optimization of Non-invasive Focused Deep Hyperthermia Inductive Heating for Breast Cancer Treatment by Using Nanoparticles and Magnetic Shielding System
نویسندگان
چکیده
The optimization of noninvasive focused deep hyperthermia inductive heating with nanoparticles injected and magnetic shielding system for breast cancer treatment has been presented in this article and the results are discussed. It is a technique to control magnetic field intensity and focusing the heating area by using magnetic fluid and cylindrical metal shielded with aperture. To focusing and increase the heating efficiency in the breast cancer treatment. In the simulation, the inductive applicator is a ferrite core with diameter of 7 cm and excited by 4 MHz signal. We show that the magnetic field intensity can be controlled by changing the aperture size to suitable. The simulations show that the heating area can be effectively controlled by using the magnetic fluid together with shielding system. Results have shown that the efficiency of heat can be increased by varying the radius size of shielding. Moreover, we show that the heating efficiency can be increased by using the magnetic fluid nanoparticles. The advantage of proposed magnetic field shielding system with nanoparticles injected is that it can be applied to non-invasive focused deep hyperthermia inductive heating for breast cancer treatment.
منابع مشابه
Induced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study
In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...
متن کاملEvaluation of the Effects of Injection Velocity and Different Gel Concentrations on Nanoparticles in Hyperthermia Therapy
Background and objective: In magnetic fluid hyperthermia therapy, controlling temperature elevation and optimizing heat generation is an immense challenge in practice. The resultant heating configuration by magnetic fluid in the tumor is closely related to the dispersion of particles, frequency and intensity of magnetic field, and biological tissue properties.Methods: In this study, to solve he...
متن کاملSimulation of tissue heating by magnetic fluid hyperthermia
Objective: Magnetic fluid hyperthermia is a technique in which thermal energy is generated by magnetic nanoparticles (MNPs) that are excited by an alternating magnetic field (AC field). During hyperthermia, in-vivo monitoring of elevation of temperature relies on invasive insertion of conventional thermometers, or employment of thermo-sensitive cameras that lack high precision....
متن کاملEffect of magnetic fluid hyperthermia with dendrimer coated iron oxide nanoparticles on breast cancer in BALB/c mice
Introduction: Magnetic fluid hyperthermia (MFH) is a promising therapeutic method in cancer therapy with using magnetic nanoparticles (NPs). In this study, we assessed the effect of MFH on mechanisms of cell death in murine breast cancer cell line (MC4-L2) and also the treatment of breast tumor in BALB/C mice using four generation dendrimer coated iron oxide nanoparticles (G4@I...
متن کاملA review on hyperthermia via nanoparticle-mediated therapy.
Hyperthermia treatment, generated by magnetic nanoparticles (MNPs) is promising since it is tumour-focused, minimally invasive and uniform. The most unique feature of magnetic nanoparticles is its reaction and modulation by a magnetic force basically responsible for enabling its potential as heating mediators for cancer therapy. In magnetic nanoparticle hyperthermia, a tumour is preferentially ...
متن کامل